Home
Class 11
MATHS
tan["cos"^(-1)4/5+"tan"^(-1)2/3]=...

`tan["cos"^(-1)4/5+"tan"^(-1)2/3]=`

A

`17/6`

B

`7/16`

C

`16/7`

D

`6/17`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) MORE THAN ONE CORRECT ASWER TYPE QUESTIONS)|2 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-I (MAIN) SINGLE ASWER TYPE QUESTIONS)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

sec["tan"^(-1)5+"tan"^(-1)1/5-"tan"^(-1)3/4]=

tan("Tan"^(-1)1/2+"Tan"^(-1)1/3)=

"tan"^(-1)5/6+1/2"tan"^(-1)11/60=

Show that "tan"^(-1)1/2+"tan"^(-1)2/11="tan"^(-1)3/4

2"tan"^(-1)1/5+"tan"^(-1)1/7+2"tan"^(-1)1/8=

"tan"^(-1)1/8+"tan"^(-1)1/2+"tan"^(-1)1/5=

"Tan"^(-1)3/2-"Tan"^(-1)1/5=

Sin^(-1)(4/5)+2Tan^(-1)""1/3=

tan^(-1)(2+)tan^(-1)(3)=