Home
Class 11
MATHS
If a(1),a(2),a(3),....,a(n) is an A.P. w...

If `a_(1),a_(2),a_(3),....,a_(n)` is an A.P. with common difference d, then
`tan[Tan^(-1)(d/(1+a_(1)a_(2)))+Tan^(-1)(d/(1+a_(2)a_(3)))+...Tan^(-1)(d/(1+a_(n-1)a_(n)))=`

A

`((n-1)d)/(a_(1)+a_(n))`

B

`((n-1)d)/(1+a_(1)a_(n))`

C

`(nd)/(1+a_(1)a_(n))`

D

`(a_(n)-a_(1))/(a_(n)+a_(1))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) MORE THAN ONE CORRECT ASWER TYPE QUESTIONS)|2 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-II (ADVANCED) LINKED COMPREHENSION TYPE QUESTIONS)|3 Videos
  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE SHEET (EXERCISE-II LEVEL-I (MAIN) SINGLE ASWER TYPE QUESTIONS)|17 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

If a_(1),a_(2),a_(3),...a_(n) are in A.P. with common difference d, then tan[tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))+,....+tan^(-1)((d)/(1+a_(n-1)a_(n)))]=

If a_(1), a_(2), a_(3),….a_(n) be an A.P with common difference d, then sec a_(1) sec a_(2) + sec a_(2) sec a_(3) + …+ sec a_(n-1) sec a_(n) =

If a_(1), a_(2), a_(3)…..a_(n) are in A.P. with common difference d then sin d [cosec a_(1) cosec a_(2) + cosec a_(2) cosec a_(3) + cosec a_(3) cosec a_(4)+ …"n terms"] =

If a_(1), a_(2), a_(3),…..a_(n) are in A.P where a_(i) gt 0, AA I then (1)/(sqrt(a_(1)) + sqrt(a_(2))) + (1)/(sqrt(a_(2)) + sqrt(a_(3)))+ …+ (1)/(sqrt(a_(n-1)) + sqrt(a_(n))) = (k)/(sqrt(a_(1)) + sqrt(a_(n))) then k=

If a_(1), a_(2) ……… a_(n) are in A.P with common difference d ne 0, then sum of the series sin d [ sec a_(1) sec a_(2) + sec a_(2) sec a_(3) + …. + sec a_(n - 1) sec a_(n) ]

If (a_(1) + ib_(1)) (a_(2) + ib_(2)) … (a_(n) + ib_(n)) = A + iB then Tan^(-1) ((b_(1))/(a_(1))) + Tan^(-1) ((b_(2))/(a_(2))) + …. + Tan^(-1) ((b_(n))/(a_(n))) =

If the coefficients of 4 consecutive terms in the expansion of (1+x)^(n) are a_(1),a_(2),a_(3),a_(4) respectively, then show that (a_(1))/(a_(1)+a_(2))+(a_(3))/(a_(3)+a_(4))=(2a_(2))/(a_(2)+a_(3))

Lt_(x to oo) ((a_(1)^((1)/(x))+a_(1)^((1)/(x))+....+a_(n)^((1)/(x)))/(n))_(1)^(x)=

If a_(1), a_(2),….a_(n) are in H.P then (a_(1))/(a_(2) + a_(3) + …+ a_(n)), (a_(2))/(a_(1) + a_(3) + …+ a_(n)), (a_(3))/(a_(1) + a_(2) + a_(4)…+ a_(n)) ….(a_(n))/(a_(1) + a_(2) + a_(3) + ….a_(n-1))