Home
Class 11
MATHS
If the sum of the series cot^(-1)2+cot^(...

If the sum of the series `cot^(-1)2+cot^(-1)8+cot^(-1)18+…+cot^(-1)2n^(2)+…… " upto "infty " is "(kpi)/4` then the value of K is

Text Solution

Verified by Experts

The correct Answer is:
1
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) STATEMENT TYPE QUESTIOS)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

The value of cot[Cot^(-1)7+Cot^(-1)8+Cot^(-1)(18)] is

cot(pi/4-2Cot^(-1)3)=

cot((pi)/4-2cot^(-1)3)=

Find the value of the following cot^(-1)(1/2)+cot^(-1)(1/3)

Cot^(-1)3+Cot^(-1)7+Cot^(-1)13+ ……n terms =

Cot^(-1)(4/3)-Cot^(-1)(15/8)=

If S_(n)=cot^(-1)(3)+cot^(-1)(7)+cot^(-1)(13)+cot^(-1)(21)+….. n terms, then

Sum of infinite terms of the series cot^(-1)(1^(2)+3/4)+cot^(-1)(2^(2)+3/4)+cot^(-1)(3^(2)+3/4)+….. is