Home
Class 11
MATHS
Let cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x...

Let `cos^(-1)(x)+cos^(-1)(2x)+cos^(-1)(3x)" be "pi`. If x satisfies the equation `ax^(3)+bx^(2)+cx-1=0` then the value of (b-a-c) is

Text Solution

Verified by Experts

The correct Answer is:
2
Promotional Banner

Topper's Solved these Questions

  • INVERSET TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise ADDITIONAL PRACTICE EXERCISE (LEVEL-II PRACTICE SHEET (ADVANCED) STATEMENT TYPE QUESTIOS)|2 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|37 Videos
  • LIMITS

    AAKASH SERIES|Exercise PRACTICE EXERCISE|143 Videos

Similar Questions

Explore conceptually related problems

The equation 2Cos^(-1)x=Cos^(-1)(2x^(2)-1) is satisfied by

If 1,2,3 and 4 are the roots of the equation x^4 + ax^3 + bx^2 +cx +d=0 then a+ 2b +c=

If 1,2,3 and 4 are the roots of x^4+ax^3+bx^2+cx+d=0 , then find the values of a,b,c and d.

If 0ltcos^(-1)x lt 1 and 1+sin(cos^(-1)x)+sin^(2)(cos^(-1)x)+sin^(3)(cos^(-1)x)+…….oo=2 , then the value of 12x^(2) is

For the equation Cos^(-1)x+Cos^(-1)2x+pi=0 the number of real solution is

If 0 lt cos^(-1)x lt 1 and 1+sin(cos^(-1)x)+sin^(2)(cos^(-1)x)+sin^(3)(cos^(-1)x)+…infty=2 , then the value of 12x is