Home
Class 11
MATHS
x = log ((1)/(y) + sqrt(1+(1)/(y^(2)))) ...

`x = log ((1)/(y) + sqrt(1+(1)/(y^(2)))) rArr y=`

A

tan h x

B

cot h x

C

sec h x

D

cosec h x

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If x = log ( y + sqrt(y^2 -1)) then y =

If y sqrt(1+ x ^(2)) = log ( x + sqrt( 1 + x ^(2))) then (1 + x ^(2)) y_(1) + xy=

If y = log (x + sqrt(x ^(2) + 1)) then y _(2)(1) =

If y = (log x )/(x) then y _(1) (1) =

If sqrt(1 - x^(2)) + sqrt(1 - y^(2)) = a(x - y) , then prove that (dy)/(dx) = sqrt((1-y^(2))/(1-x^(2))) .

x = cos^(-1)((1)/(sqrt(1+t^(2)))),y = sin^(-1)((t)/(sqrt(1+t^(2))))rArr(dy)/(dx) is equal to

If x = Sin ^(-1) t, y = sqrt(1- t ^(2)) then (d^(2) y)/(dx ^(2))=