Home
Class 11
MATHS
"Tanh"^(-1) x = a log ((1+x)/(1-x)), |x|...

`"Tanh"^(-1) x = a log ((1+x)/(1-x)), |x| lt 1 rArr a `=

A

1

B

2

C

`(1)/(2)`

D

`(1)/(4)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

tanh^(-1)x=alog|(1+x)/(1-x)|, |x| lt 1 rArr a =

If x= "Tanh"^(-1) y , then "log"_e ((1+y)/(1-y)) =

Lt_(x to 1)x^((1)/(1-x))=

If "Tanh"^(-1) (1 - sqrt (1 -x^2))/x = 4 then x =

If |x| lt 1, then 1/2 log ((1+x)/(1-x)) =

If x=tanh^(-1)(y) , then log_(e )((1+y)/(1-y))=

int (log (1+(1)/(x)))/(x(1+x))dx=

f(x)= int_(0)^(x) ln ((1-t)/(1+t))dt rArr

If y = (log x )/(x) then y _(1) (1) =