Home
Class 11
MATHS
If sin h^(-1) (x) = log(e) (5 + sqrt(26)...

If `sin h^(-1) (x) = log_(e) (5 + sqrt(26))` then x =

A

`(1)/(2)(3sqrt(5) + 2sqrt(10))`

B

`(1)/(2)(3sqrt(5) - 2sqrt(10))`

C

`(1)/(2)(12 + 2sqrt(50))`

D

`(1)/(2)(12 - 2sqrt(50))`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cosh^(-1)(x)=log_(e )(2+sqrt(3)) , then x =

IF cos h ^(-1) x= 2 log _(e) ( sqrt(2)+1) , then x=

If sinh x=5, show that x=log_(e ) (5+sqrt(26))

sec h^(-1) ((2)/(3)) = log_(e) (((k + 1) + sqrt(k^(2) + 1))/(k)) then k =

If x gt 0, and log_(2) + log_(2)(sqrt(x)) + log_(2) (4sqrt(x)) + log_(2) ( 8sqrt(x)) + log_(2) (16sqrt(x)) + ….. = 4 then x =

Assertion (A) : "cosech"^(-1)(2)=log_(e )((1+sqrt(5))/(2)) Reason (R ) : "Cosech"^(-1)(x)=log_(e ) ((1+sqrt(1+x^(2)))/(2))

sin h^(-1) ((x)/(sqrt(1 - x^(2)))) =