Home
Class 11
MATHS
sin h^(-1) (2 alpha) = 2 cos h^(-1) (bet...

`sin h^(-1) (2 alpha) = 2 cos h^(-1) (beta)` then

A

`alpha^(2) + beta^(2) = alpha^(4)`

B

`alpha^(2) + beta^(2) + 4`

C

`alpha^(2) + beta = beta^(4)`

D

`alpha^(2) = beta^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If sin h^(-1) 2 alpha= 2 coh h^(-1) beta then

If tan alpha and tan beta are the roots of the equation x^(2) +px + q = 0 , then the value of sin^(2) (alpha +beta) + p cos (alpha + beta) sin (alpha + beta) + q cos^(2) (alpha + beta) is

If sin h^(-1) ( sqrt8) + sin h^(-1) ( sqrt24) = alpha , then sin h = alpha

If alpha, beta are acute angles and cos 2 alpha=(3 cos 2 beta-1)/(3-cos 2 beta) then

Prove that sin^(2)alpha + cos^(2) (alpha + beta) + 2 sin alpha sin beta cos (alpha + beta) is independent of alpha .

Statement-I : If f(theta)=(cot theta)/(1+cot theta) and alpha+ beta=(5pi)/(4) then f(alpha) f(beta)=(1)/(2) Statement-II : If alpha+ beta=(pi)/(2) and beta+ gamma= alpha then tan alpha= tan beta+ 2tan gamm Statement-III sin^(2) alpha+ cos^(2) (alpha+ beta)+2 sin alpha beta cos (alpha+beta) is independent of alpha only

If A=[(cos^(2) alpha, cos alpha sin alpha),(cos alpha sin alpha,sin^(2)alpha)] and B=[(cos^(2) beta, cos beta sin beta),(cos beta sin beta, sin^(2) beta)] are two matrices such that the product AB is the null matrix then alpha-beta is