Home
Class 11
MATHS
If |x| lt 1 then (1)/(2) log(e)((1+x)/(1...

If `|x| lt 1` then `(1)/(2) log_(e)((1+x)/(1-x))` =

A

tan h x

B

`sin h^(-1)(x)`

C

`cot h^(-1)(x)`

D

`tan h^(-1)(x)`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If |x| lt 1 , then (1)/(2) log((1+x)/(1-x))=

If |x| lt 1, then 1/2 log ((1+x)/(1-x)) =

Assertion (A) : (1)/(5)+(1)/(3.5^(3))+(1)/(5.5^(5))+(1)/(7.5^(7))+…(1)/(2)log((3)/(2)) Reason (R ) : If |x| lt 1 then log_(e )((1+x)/(1-x))=2(x+(x^(3))/(3)+(x^(5))/(5)+…)

If x=tanh^(-1)(y) , then log_(e )((1+y)/(1-y))=

If |x| lt 1 then coefficient of x^(n) in log_(10)(1-x) is

Assertion (A) : The coefficient of of x^(5) in the expansion log_(e ) ((1+x)/(1-x)) is (2)/(5) Reason (R ) : The equality log((1+x)/(1-x))=2[x+(x^(2))/(2)+(x^(3))/(3)+(x^(4))/(4)+….oo] is valid for |x| lt 1

int_(1)^(2)(e^(x)(1+x log x))/(x) dx=

If |x| lt 1 then coefficient of x^(2) in (log(1+x))/((1-x)^(2)) is