Home
Class 12
MATHS
Simplify : cos\ theta [costhetas intheta...

Simplify : `cos\ theta` `[costhetas intheta-s inthetacostheta]+sintheta\ \ [sintheta-costhetacosthetas intheta]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Simplify costheta[costhetasinthetasinthetacostheta]+sintheta[sintheta-costhetacosthetasintheta]

costheta[[costheta, sintheta], [-sintheta, costheta]]+sintheta[[sintheta, -costheta], [costheta, sintheta]]=

Simplify: cos theta[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta[{:(sin theta ,-costheta),(costheta, sintheta):}]

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

If sintheta+costheta=x then sintheta-costheta=?

Show that costheta.[{:(costheta,sintheta),(-sintheta,costheta):}]+sintheta.[{:(sintheta,-costheta),(costheta,sintheta):}]=I.

costheta[{:(costheta,-sin theta),(sintheta,costheta):}]+sintheta[{:(sintheta,costheta),(-costheta,sintheta):}]=?

Evaluate costheta.costheta+sintheta.sintheta

(sintheta+sin2theta)/(1+costheta+cos2theta) =

The value of f(pi/6) where f(theta)=|{:(cos^2theta,costhetasintheta,-sintheta),(costhetasintheta,sin^2theta,costheta),(sintheta,-costheta,0):}|