Home
Class 12
MATHS
(dy)/(dx) +1 = e^(x+y)...

`(dy)/(dx) +1 = e^(x+y)`

Promotional Banner

Similar Questions

Explore conceptually related problems

(dy)/(dx) -y =e^(x ) " when" x=0 and y=1

(dy) / (dx) = e ^ (x + y)

The solution of (dy)/(dx) -y=e^(x) , y(0) = 1 , is

Solve (dy)/(dx)-y=e^(x) ,y(0)=1

Find (dy)/(dx) of y=e^((x^(2))/(1+x^(2)))

Solve the following differential equation: (dy)/(dx)=(e^(x)+1)y

Solution of the differential equation (x-y)(1-(dy)/(dx))=e^(x) is

Solve the equation (dy)/(dx)+(1)/(x)=(e^(y))/(x^(2))

If e^(x)+e^(y)=e^(x+y), prove that (dy)/(dx)=-(e^(x)(e^(y)-1))/(e^(y)(e^(x)-1)) or,(dy)/(dx)+e^(y-x)=0