Home
Class 12
MATHS
lim(x->a)(x^n-a^n)/(x-a)=n*a^(n-1)...

`lim_(x->a)(x^n-a^n)/(x-a)=n*a^(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If lim_(x->1)((x^n-1)/(n(x-1)))^(1/(x-1))=e^p , then p is equal to

lim_(x rarr2)((1+x)^(n)-3^(n))/(x-2)=n*3^(n-1)

(lim_(x rarr a)(x^(n)-a^(n))/(x-a) is equal to na^(n)b*na^(n-1) c.nad.1

lim_(x rarr oo) (x^(n)+a^(n))/(x^(n)-a^(n))= ________.

(i) lim_(xrarra) (x^(m)-a^(m))/(x^(n)-a^(n)) (ii) lim_(xrarra) ((1+x)^(1//n)-1)/(x)

If lim_(x to 0) (x^n-sin^n x)/(x-sin^n x) is nonzero and finite , then n in equal to

consider f(x)=lim_(x-oo)(x^(n)-sin x^(n))/(x^(n)+sin x^(n)) for x>0,x!=1,f(1)=0 then

Evaluate: lim_(x rarr a) [(x^(n)-a^(n))/(x^(m)-a^(m))] .

lim_(x to a) (x^(m)-a^(m))/(x^(n)-a^(n)) is equal to