Home
Class 11
MATHS
Let f"[2,7]rarr[0,oo) be a continuous an...

Let `f"[2,7]rarr[0,oo)` be a continuous and differentiable function. Then, the value of
`(f(7)-f(2))((f(7))^(2)+(f(2))^(2)+f(2).f(7))/(3)` is
(where `c in (2,7)`)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f:[2,7]rarr[0,oo) be a continuous and differentiable function.Then show that (f(7)-f(2))((f(7))^(2)+(f(2))^(2)+f(2)f(7))/(3)=5f^(2)(c)f'(c) where c in[2,7]

If f is a differentiable function of x, then lim_(h rarr0)([f(x+n)]^(2)-[f(x)]^(2))/(2h)

Let f(x) be a twice-differentiable function and f'(0)=2. The evaluate: lim_(x rarr0)(2f(x)-3f(2x)+f(4x))/(x^(2))

Let f:R rarr[0,oo) be a differentiable function so that f'(x) is continuous function then int((f(x)-f'(x))e^(x))/((e^(x)+f(x))^(2))dx is equal to

Let f(x) be continuous and differentiable function everywhere satisfying f(x+y)=f(x)+2y^(2)+kxy and f(1)=2, f(2)=8 then the value of f(3) equals

Let f:(0, oo)rarr(0, oo) be a differentiable function such that f(1)=e and lim_(trarrx)(t^(2)f^(2)(x)-x^(2)f^(2)(t))/(t-x)=0 . If f(x)=1 , then x is equal to :

Let f(x) be a continuous & differentiable function on R satisfying f(-x)=f(x)&f(3+x)=f(3-x)AA x in R . If f'(1)=-5 then f'(7) =