Home
Class 12
MATHS
int0^(pi/4)sqrt(tanx)dx...

`int_0^(pi/4)sqrt(tanx)dx`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of int_0^(pi//4) sqrt(tan x dx) +int_0^(pi//4) sqrt(cot x dx) is equal to

int_(0)^(pi//4)(sqrt(tanx)+sqrt(cotx))dx equals

If int_(0)^(pi//4)[sqrt(tanx)+sqrt(cotx)]dx=(pi)/(sqrtm), then the value of m is equal to

The value of the integral int_(0)^((pi)/4)(sqrt(tanx))/(sinx cos x) dx equals

Evaluate the following integral: int_0^(pi//4)(sqrt(t a n x)+sqrt(cotx))dx

int_0^(pi//2)log(tanx)dx

Prove that : int_(0)^(pi//2) (sqrt(tanx))/(sqrt(tanx +sqrt(cotx)))dx=(pi)/(4)

Evaluate the following: int_0^(pi/2) sqrt(tanx)/(1+sqrt(tanx))dx