Home
Class 12
MATHS
Consider the integral I=intfrac(xsin^-1x...

Consider the integral I=`intfrac(xsin^-1x)(sqrt(1-x^2))dx` Evaluate I.

Promotional Banner

Topper's Solved these Questions

  • DIFFERENTIAL EQUATION

    MAXIMUM PUBLICATION|Exercise EXAMPLE|81 Videos
  • INVERSE TRIGNOMETRY

    MAXIMUM PUBLICATION|Exercise EXAMPLE|42 Videos

Similar Questions

Explore conceptually related problems

Evaluate the integral I= intfrac(xsin^-1x)(sqrt(1-x^2))dx

Consider the integral I= intfrac(xsin^-1x)(sqrt(1-x^2))dx what substitution can be given for simplifying the above integral

Find the following integrals. intfrac(1)(sqrt(7-6x-x^2))dx

Consider the integral I=int(xe^x)/(1+x)^2dx What is the value of I

Find the integrals int(sqrt(x)-1/(sqrt(x)))^2 d x

Consider the integral I=int_0^pi(xsinx)/(1+cos^2x)dx Express I=pi/2int_0^pisinx/(1+cos^2x)dx

Consider the integral I=int_0^pi(xsinx)/(1+cos^2x)dx Show that I=pi^2/4

Find the following integrals. intfrac(1)((x+1)^2-4)dx

Consider the integral I=int(xe^x)/(1+x)^2dx Express the integral I in the form of inte^x{f(x)+f'(x)}dx .

Find the following integrals. intfrac(1)(x(x^3+1))dx