Home
Class 12
MATHS
If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x...

If `|{:(1,x,x^(2)),(x,x^(2),1),(x^(2),x,x):}|` =3 then the value of `|{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If |{:(1,x,x^(2)),(x,x^(2),1),(x^(2),1,x):}| =3 then the value of |{:(x^(3)-1,0,x-x^(4)),(0,x-x^(4),x^(3)-1),(x-x^(4),x^(3)-1,0):}| is

If |[1,x,x^2] , [x,x^2,1] , [x^2,1,x]|=3 then find the value of |[x^3-1, 0, x-x^4] , [0,x-x^4, x^3-1] , [x-x^4, x^3-1, 0]|

If |1xx^2xx^2 1x^2 1x|=, then find the value of |x^3-1 0x-x^4 0x-x^4x^3-1x-x^4x^3-1 0|

If x<0 and x^(4)+(1)/(x^(4))=47, then the value of x^(3)+(1)/(x^(3)) is

If x-(1)/(x)=1 , then the value of (x^(4)-(1)/(x^(2)))/(3x^(2)+5x-3) is

If x^(2)-4x +1=0 , then what is the value of x^(3)+(1)/(x^(3)) ?

If x^2 - 3x +1=0, then the value of x +1/x is

If x^(4) - 3x^(2) - 1 = 0 , then the value of (x^(6)-3x^(2)+(3)/(x^(2))-(1)/(x^(6))+1) is :

If x-(1)/(x)=3, find the values of x^(2)+(1)/(x^(2)) and x^(4)+(1)/(x^(4))