Home
Class 11
MATHS
The number of solutions of the equation...

The number of solutions of the equation `[y+[y]]=2 cosx, ` where `y=(1)/(3)[sinx+[sinx+[sinx]]]` (where [.] denotes the greatest integer function) is

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x)=[sinx] where [.] denotest the greatest integer function is continuous at:

f(x)=[abs(sinx)+abs(cosx)] , where [*] denotes the greatest integer function.

Domain of the function f(x)=(1)/([sinx-1]) (where [.] denotes the greatest integer function) is

The range of the function f(x) =[sinx+cosx] (where [x] denotes the greatest integer function) is f(x) in :

lim_(x->0) ([(-5sinx)/x]+[(6sinx)/x] .(where [-] denotes greatest integer function) is equal to

Draw the graph of y=[|x|] , where [.] denotes the greatest integer function.

If I=int_(-20pi)^(20pi)|sinx|[sinx]dx (where [.] denotes the greatest integer function) then the value of I is

lim_(x->0) (e^[[|sinx|]])/([x+1]) is , where [.] denotes the greatest integer function.

The number of solutions of the equations y=1/3[sin theta+[sin theta +[sin theta]]] and [y+[y]]=2 cos theta [ where , [.] denote the greatest integer function ] is/are