Home
Class 12
MATHS
अवकल समीकरण (1+x^(2))(dy)/(dx)=(e^(m tan...

अवकल समीकरण `(1+x^(2))(dy)/(dx)=(e^(m tan^(-1)x)-y)` को हल कीजिए | दिया गया है, जब x = 0, तब y = 0.

Promotional Banner

Similar Questions

Explore conceptually related problems

Find dy/dx if y=e^(tan^-1(x^2)

e^(-x) (dy)/(dx) = y(1+ tanx + tan^(2) x)

Solve (dy)/(dx)-y=e^(x) ,y(0)=1

Find the particular solution of the differential equation : (1+x^(2))(dy)/(dx)=e^(m tan^(-1)x)-y , given that y=1 when x=0 .

(1-y)x(dy)/(dx)+(1+x)y=0

(1+e^(x))/(y)(dy)/(dx)=e^(x), when y=1, x=0

(dy)/(dx)=2e^(x)y^(3) , when x=0, y=(1)/(2)

(x+1)(dy)/(dx) -1 = 2e^(-y) , y=0, " when " x=1

Solve: x (dy)/(dx)- y-x tan . (y/x) . = 0

x(1+y^(2))dx+y(1+x^(2))dy=0 at (0, 0)