Find the value of a ,b,c and d from the equation : `[{:(a-b,2a+c),(2a-b,3c+d):}]=[{:(-1,5),(0,13):}]`.
Text Solution
Verified by Experts
The correct Answer is:
`d=4`
Topper's Solved these Questions
MATRICES
KUMAR PRAKASHAN|Exercise EXERCISE -3.2|22 Videos
MATRICES
KUMAR PRAKASHAN|Exercise EXERCISE -3.3|11 Videos
LINEAR PROGRAMMING
KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
PROBABILITY
KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos
Similar Questions
Explore conceptually related problems
Find the values of a,b,c,and d from the following equation : [{:(2a+b,a-2b),(5c-d,4c+3d):}]=[{:(4,-3),(11,24):}]
Find the values of a,b ,c and d, if 3[{:(a,b),(c,d):}]=[{:(a,6),(-1,2d):}]+[{:(4,a+b),(c+d,3):}]
Find the value of the determinant |{:(a^2,a b, a c),( a b,b^2,b c), (a c, b c,c^2):}|
If A = {a,b,c,d} and the function f ={(a,b),(b,d) , (c,a) ,(d,c) } . Write f^(-1) .
Match the column A with column B and choose the correct option. (A) (a - 2), (b - 3), (C-5), (d - 4), (e - 1) (B) (a - 2), (b-5), (C-3), (d - 4), (e - 1) (C) (a - 1), (b - 3), (C-5), (d - 4), (e - 2) (D) (a - 1), (b - 5), (C-3), (d - 4), (e - 2)
Find the area of quadrilateral ABCD with vertices A(-4, -2), B(-3, -5), C(3,-2) and D(2,3).
The roots of the quadratic equation (a + b-2c)x^2- (2a-b-c) x + (a-2b + c) = 0 are
A,B,C and D have position vectors a,b,c and d, respectively, such that a-b=2(d-c). Then,
If a,b,c and d are the roots of the equation x^(4)+2x^(3)+4x^(2)+8x+16=0 the value of the determinant |{:(1+a,1,1,1),(1,1+b,1,1),(1,1,1+c,1),(1,1,1,1+d):}| is
KUMAR PRAKASHAN-MATRICES -Practice Paper - 3 (Section - D)