Home
Class 12
MATHS
If A=[{:(3,1),(-1,2):}], show that A^(2)...

If `A=[{:(3,1),(-1,2):}]`, show that `A^(2)-5A+7I=O`.

Text Solution

Verified by Experts

The correct Answer is:
`=[{:(0,0),(0,0):}]=O=R.H.S`.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    KUMAR PRAKASHAN|Exercise PRACTICE WORK |55 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise TEXTBOOK BASED MCQS|43 Videos
  • MATRICES

    KUMAR PRAKASHAN|Exercise EXERCISE -3.4|18 Videos
  • LINEAR PROGRAMMING

    KUMAR PRAKASHAN|Exercise PRACTICE WORK|25 Videos
  • PROBABILITY

    KUMAR PRAKASHAN|Exercise Practice Paper - 13 (Section - D (Answer the following questions))|2 Videos

Similar Questions

Explore conceptually related problems

For the matrix A=[{:(2,3),(1,2):}] , show that A^2-4A+I_2=0 . Hence, find A^(-1)

If A = [{:(3,1),(-1,2):}] and A^(2) - 5A= kI then k=.........

If A=[{:(1,2,3),(3,-2,1),(4,2,1):}] , then show that A^(3)-23A-40I=O .

Show that A=[{:(5,3),(-1,-2):}] satisfies the equation A^(2)=3A-7I=0 and hence find A^(-1) .

For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O . Hence find A^(-1)

For the matrix A=[{:(1,2,2),(2,1,2),(2,2,1):}] . Show that A^2-4A-5I=0 Hence find A^(-1)

Find A^(-1)" if "A=[{:(0,1,1),(1,0,1),(1,1,0):}] and show that A^(-1)=(A^2-3I)/2

If A=[{:(1,2),(4,1):}] , find A^(2)+2A+7I .

Show that the matrix A=[{:(2,3),(1,2):}] satisfies the equation A^2-4A+I=O , where I is 2xx2 identity matrix and O is 2xx2 zero matrix. Using this equation find A^(-1)

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)