Home
Class 12
MATHS
If A=[{:(1,2,3),(3,-2,1),(4,2,1):}], the...

If `A=[{:(1,2,3),(3,-2,1),(4,2,1):}]`, then show that
`A^(3)-23A-40I=O`.

Promotional Banner

Topper's Solved these Questions

  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-A)|20 Videos
  • ANNUAL EXAMINATION :SAMPLE PAPER

    KUMAR PRAKASHAN|Exercise PART-B ( SECTION-B)|16 Videos
  • APPLICATION OF DERIVATIVES

    KUMAR PRAKASHAN|Exercise PRACTICE PAPER - 6 (SECTION - D)|2 Videos

Similar Questions

Explore conceptually related problems

If A=(1)/(3)[{:(1,2,2),(2,1,-2),(-2,2,-1):}] then show that A A'=A'A=I.

If A=[{:(1,0,2),(0,2,1),(2,0,3):}] then , prove that A^(3)-6A^(2)+7A+2I=O .

If A=[{:(1,2,1),(2,1,3),(1,1,0):}] then prove that A^3-2A^2-7A-4I_3=0 . Hence find A^(-1)

If A=[{:(2,3,-4),(5,1,0),(3,-2,5):}]andI=[{:(1,0,0),(0,1,0),(0,0,1):}] then show that AI=IA=A.

Find A^(-1)" if "A=[{:(0,1,1),(1,0,1),(1,1,0):}] and show that A^(-1)=(A^2-3I)/2

If A=[{:(1,0,-1),(2,1,3),(0,1,1):}] , then verify that A^(2)+A=A(A+I) where I is 3xx3 unit matrix.

If A=[{:(3,1),(-1,2):}] , show that A^(2)-5A+7I=O .

For the matrix A=[{:(1,1,1),(1,2,-3),(2,-1,3):}] Show that A^3-6A^2+5A+11I=O . Hence find A^(-1)

If A=[{:(2,-1,1),(-1,2,-1),(1,-1,2):}] Verify the result A^3-6A^2+9A-4I=O and hence find A^(-1)

If A=[{:(2,3),(1,-4):}] and B=[{:(1,-2),(-1,3):}] then verify that (AB)^(-1)=B^(-1)A^(-1)