Home
Class 8
MATHS
Show that: (a-b)(a+b)+ (b-c) (b+c) +(c...

Show that:
`(a-b)(a+b)+ (b-c) (b+c) +(c-a) (c+a) =0`

Promotional Banner

Topper's Solved these Questions

  • Comparing Quantities

    ASHOK PUBLICATION ASSAM|Exercise EXAMPLE|65 Videos

Similar Questions

Explore conceptually related problems

If a + b + c = 0 , then prove that (a+b)^2/(ab) + (b+c)^2/(bc) + (c+a)^2/(ca)=3

Show that a + b + c = b + c + a

Prove that 1/(a(a-b)(a-c))+1/(b(b-c)(b-a))+1/(c(c-a)(c-b))=1/(abc)

Show that a + b + c = c + a + b

If a+b+c=0 , then prove that a(c+a)(a+b)=b(a+b)(b+c)=c(a+c)(b+c)=abc

Prove that a/(bc(a-b)(a-c))+b/(ca(b-c)(b-a))+c/(ab(c-a)(c-a))=1/(abc)

Prove that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

Prove that (a-b)^3+(b-c)^3+(c-a)^3=3(a-b)(b-c)(c-a)

Using properties of determinant show that : |(a+b+2c,a,b),(c,b+c+2a,b),(c,a,c+a+2b)|=2(a+b+c)^3

Using determinant show that the points (a,b+c),(b,c+a) and (c,a+b) are collinear.