Home
Class 8
MATHS
Divide : 63a^2b^4c^6 by 7a^2b^2c^3...

Divide :
`63a^2b^4c^6` by `7a^2b^2c^3`

Promotional Banner

Topper's Solved these Questions

  • Exponents and Powers

    ASHOK PUBLICATION ASSAM|Exercise EXAMPLE|62 Videos
  • Introduction to Graphs

    ASHOK PUBLICATION ASSAM|Exercise EXAMPLE |47 Videos

Similar Questions

Explore conceptually related problems

If a+b+c=0 , then prove that a^4+b^4+c^4=1/2(a^2+b^2+c^2)^2

If a+b+c=0 , then prove that (a^2+b^2+c^2)^2=4 (a^2b^2+b^2c^2+c^2a^2)

Resolve into factors a^2b^2(a^2-b^2)+b^2c^2(b^2-c^2)+c^2a^2(c^2-a^2)

If b+c-a=7, c+a-b=3, a+b-c=-10 then find the value 2b^2c^2+2a^2b^2+2c^2a^2-a^4-b^4-c^4

Resolve into factors a^4b^4(a^2-b^2)+b^4c^4(b^2-c^2)+c^4a^4(c^2-a^2)

Factorise : 63a^2 - 112b^2

Factorise : |(a,b,c),(a^2,b^2,c^2),(a^3,b^3,c^3)|

Resolve into factors a^2(b^4-c^4)+b^2(c^4-a^4)+c^2(a^4-b^4)

If a + b + c = 0 , then prove that (a^2+b^2+c^2)/(a^3+b^3+c^3)+2/3(1/a+1/b+1/c)=0

Resolve into factors : a^3b^3+b^3c^3+c^3a^3-3a^2b^2c^2