Home
Class 12
MATHS
For x>0, let f(x)=int1^x loget/(1+t)dt f...

For `x>0`, let `f(x)=int_1^x log_et/(1+t)dt` find the function `f(x)+f(1/x)` and show that `f(e)+f(1/e)=1/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

For x>0, let f(x)=int_(1)^(x)(log_(e)t)/(1+t)dt find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log_(t)t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and show that f(e)+f((1)/(e))=(1)/(2)

For x>0, let f(x)=int_(1)^(x)(log t)/(1+t)dt. Find the function f(x)+f((1)/(x)) and find the value of f(e)+f((1)/(e))

f(x)=int_1^x lnt/(1+t) dt , f(e)+f(1/e)=

If f(x)=int_(1)^(x)(ln t)/(1+t)dt, then

If f(x)=int_(1)^(x) (log t)/(1+t) dt"then" f(x)+f((1)/(x)) is equal to

If F(x)=int_(1)^(x)(ln t)/(1+t+t^(2))dt then F(x)=-F((1)/(x))

f(x)=int_0^x e^t f(t)dt+e^x , f(x) is a differentiable function on x in R then f(x)=

Let f(x)=int_(0)^(x)(e^(t))/(t)dt(xgt0), then e^(-a)[f(x+1)-f(1+a)]=