Home
Class 12
MATHS
Prove that : int(0)^(pi) (x sin x)/(1+co...

Prove that : `int_(0)^(pi) (x sin x)/(1+cos^(2)x) dx =(pi^(2))/(4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_(0)^( pi)(sin x)/(1+cos^(2)x)dx =

int_(0)^(pi) x sin x cos^(2)x\ dx

int_(0)^(pi) x sin x. cos^(2) x dx

int_(0)^( pi/2)(sin x)/(1+cos x)dx

Prove that: int_(0)^( pi/2)(sin x)/(sin x-cos x)dx=(pi)/(4)

Prove that : int_(0)^(pi) x cos^(2) x dx =(pi^(2))/(4)

Prove that: int_(0)^(2 pi)(x sin^(2n)x)/(sin^(2n)+cos^(2n)x)dx=pi^(2)

int_(0)^(pi//2) x sin x cos x dx

Prove that : int_(0)^(pi//2) (sin^(3)x)/(sin^(3) x+ cos^(3)x)dx =(pi)/(4)

Prove that : int_(0)^(pi//2) (x sin x cos x)/(sin^(4) x+ cos^(4)x)dx =(pi)/(16)