Home
Class 12
MATHS
सिद्ध कीजिए कि tan^(-1). (sqrt(1+x^(2))...

सिद्ध कीजिए कि `tan^(-1). (sqrt(1+x^(2))-1)/(x) =(1)/(2) tan^(-1)x`.

Promotional Banner

Similar Questions

Explore conceptually related problems

int tan^(-1)((sqrt(1+x^(2))-1)/(x))dx

tan[(sqrt(1+x^(2))-1)/x] =

Solve y=tan^(-1)((sqrt(1+x^(2))-1)/(x))

if tan^(-1)((sqrt(1+x^(2))-1)/(x))=(pi)/(45) then:

If tan^(-1) .(sqrt(1+x^(2))-1)/x = 4^(@) , then

Prove that tan^(-1)backslash(sqrt(1+x^(2))-1)/(x)=(1)/(2)tan^(-1)x

Simplify tan^(-1)((sqrt(1+x^2)-1)/x)

tan^(-1){(x)/(1+sqrt(1-x^(2)))}

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))