Home
Class 10
MATHS
DeltaABC and DeltaDEF are equlateral tri...

`DeltaABC and DeltaDEF` are equlateral triangles. `A(DeltaABC) : A(DeltaDEF)` = 1 : 2. If AB = 4 , then what is length of DE?

Text Solution

Verified by Experts

The correct Answer is:
`4sqrt(2)` cm
Promotional Banner

Topper's Solved these Questions

  • SIMILARITY

    TARGET PUBLICATION|Exercise Chapter Assessment|17 Videos
  • SIMILARITY

    TARGET PUBLICATION|Exercise Additonal Problems for Practice(Based on Practice Set 1.3)|7 Videos
  • QUESTION FROM STD. IX

    TARGET PUBLICATION|Exercise Statistics|11 Videos
  • STATISTICS

    TARGET PUBLICATION|Exercise Problem Set-6|5 Videos

Similar Questions

Explore conceptually related problems

DeltaABC and DeltaDEF are equilateral triangles, A(DeltaABC) : A(DeltaDEF)= 1 :2 . If AB=4 then what is the length of DE ?

Choose the correct alternative. DeltaABC and DeltaPQR are equilateral triangles. If A(DeltaABC) : A(DeltaPQR) = 1 : 16, and AB = 2 cm, then what is the length of PR?

If DeltaABC ~ DeltaDEF such that A(DeltaABC) = 4A(DeltaDEF) and AC = 6 cm, then DF =

In the figure, DeltaABC ~ DeltaAPQ . If AB 12 cm, and AQ =1/4 AC, then the length of AP is

DeltaABC~DeltaPQR . If A(DeltaABC)=25 , A(DeltaPQR)=16 find AB : PQ .

In right angled DeltaABC , BDbotAC . If AD=4 , DC=9 , then find BD .

In DeltaABC and DeltaDEF, " " angleB = angleE, angleF = angleC and AB = 3 DE , then which of the statements regarding the two triangles is true?

In right-angled DeltaABC , if angle B=90^(@) , AB = 6 , BC=8, then find AC.