Home
Class 10
MATHS
If cos theta + (1)/(cos theta) = 4 , th...

If `cos theta + (1)/(cos theta) = 4 ` , then prove that `cos^(2) theta + (1)/(cos^(2)theta) = 14.`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    TARGET PUBLICATION|Exercise Based on Practice Set 6.2|13 Videos
  • STATISTICS

    TARGET PUBLICATION|Exercise Problem Set-6|5 Videos

Similar Questions

Explore conceptually related problems

sin theta/(1+cos theta)=

(6) prove : (i) cos^2 theta + (1)/ (1 + cot^2 theta) = 1

(1 - cos^(2)theta)cot^(2)theta

prove that cos^2theta(1 + tan^2 theta) = 1

Prove that sin^4 theta - cos^4 theta = 1 - 2cos^2 theta

If sin theta + sin^(2) theta=1 " then " cos^(2) theta+ cos^(4) theta is equal to

If cot theta = (3)/(4) , then (sin theta - cos theta)/(sin theta + cos theta) =

Prove each of the following identities : '(i) sin^(2)theta + cos^(4) theta = cos^(2) theta + sin^(4) theta (ii) "cosec"^(4) theta - "cosec"^(2) theta = cot^(4) theta + cot^(2) theta

Prove that : (1-sin theta cos theta)/ (cos theta (sec theta - cosec theta)) times (sin^2 theta - cos^2 theta)/(sin^3 theta + cos^3 theta) = sin theta