Home
Class 10
MATHS
Prove that : sec^(6)x - tan^(6)x = 1 +...

Prove that :
`sec^(6)x - tan^(6)x = 1 + 3sec^(2)x xx tan^(2)x`

Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRY

    TARGET PUBLICATION|Exercise Based on Practice Set 6.2|13 Videos
  • STATISTICS

    TARGET PUBLICATION|Exercise Problem Set-6|5 Videos

Similar Questions

Explore conceptually related problems

Prove the following: sec^6 x - tan^6 x = 1 + 3sec^2 x xx tan^2x

Prove the following : sec^6 x - tan^6 x = 1 + 3 sec^2 x times tan^2 x

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

prove that sec^4 A(1-sin^4 A) - 2tan^2 A = 1.

Prove that : tan^(4)theta + tan^(2)theta = sec^(4)theta - sec^(2) theta

int sec^4 x tan x dx =

Prove: sec^4A(1-sin^4A)-2tan^2A=1

Prove that (tan A)/(sec A -1) + (tan A)/(sec A +1) = 2 cosec A

Prove that : (tan theta)/(sec theta + 1) = (sec theta - 1)/(tan theta)

int (sec x+tan x)^2 dx =