Home
Class 11
MATHS
If x=a cos theta + b sin theta and y=a ...

If `x=a cos theta + b sin theta and y=a sin theta - b cos theta.` then` a ^(2) +b^(2) ` is equal to

A

`x ^(2) -y^(2)`

B

`x ^(2) +y^(2)`

C

`(x+y)^(2)`

D

`(x-y)^(2)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If a cos theat + b sin theta = m and a sin theta- b cos theta = n, then prove that a^2 + b^2 = m^2 + n^2

If x=2 cos theta- cos 2 theta and y=2 sin theta - sin 2 theta, then (dy)/(dx) =

If x = a cos^3 theta, y = b sin^3 theta , then

If x= a(cos theta + sin theta ), y= a(sin theta + cos theta ), then [( d^2 y)/(d x^2 ) ] at theta = pi /4 ............. A) 0 B) 1 C) -1 D) 1/sqrt 2

If x = a cos theta and y = b sin theta , find (dy)/(dx)

If x= a sin 2theta (1+ cos 2theta) , y= b cos 2theta(1- cos 2theta) , then (dy)/(dx) =

If 2y cos theta =x sin theta and 2x sec theta -y cosec theta =3, then x ^(2) +4y^(2)= ............... A) 4 B) -4 C) -2 D) 2