Home
Class 11
MATHS
If sinx+ sin^2x =1, then cos^8x+ 2cos^6x...

If `sinx+ sin^2x =1`, then` cos^8x+ 2cos^6x +cos^4x `=

A

0

B

`-1`

C

2

D

1

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx+sin^2x=1 then show that cos^2 x +cos^4 x=1

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =

If sin x + sin^(2) x + sin^(3) x = 1 , then prove that cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 .

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to ............. A) 0 B) 1 C) -1 D) 2

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

cos 10x + cos 8x + 3 cos 4x + 3 cos 2x=

If sin x + sin y =1/2 and cos x + cos y = 1 then tan (x + y) ............. A) (-8)/(3) B) 8/3 C) 4/3 D) -3/4

If tan x= (2b)/(a-c), a!=c, y = a cos^2 x +2b sin x*cos x + c sin^2x, z = a sin^2 x-2b sin x*cos x + c.cos^2x, then

If 0 cos x + cos 2x + cos 3x + cos 4x = 0 ;