Home
Class 11
MATHS
If (a+b)^2/(4ab)=sin^2theta, then...

If `(a+b)^2/(4ab)=sin^2theta`, then

A

`2a=b`

B

`a=b`

C

`a=2b`

D

`a=-b`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If 2 cos ^(2) theta - 2 sin ^(2) theta =1, then theta = ............. A) 15^(@) B) 30^(@) C) 45^(@) D) 60^(@)

If p=(2sin theta)/(1+cos theta+sin theta), and q=(cos theta)/(1+sin theta) , then

int _(0)^(pi//4) ( 4 sin 2 theta d theta )/(sin^(4) theta +cos^(4) theta )=

If p=a^2cos^2theta+b^2 sin^2 theta , where a^2+b^2=c^2 , then 4p+(d^2p)/(d theta^2) is equal to

If sin^2 theta=1/4 , then value of theta is

If x= e^2log_(e)(sin theta), y= e^2log_(e)(cos theta) , then dy/dx at theta=pi/4 ........... A) 1 B) -1 C) 0 D) 2

1-2sin^2(pi/4+theta)=

Prove the following: sin^4theta+cos^4theta=1-2sin^2thetacos^2theta

If a tantheta=b , then a cos 2theta+b sin 2theta=

Prove the following: tan^2theta-sin^2theta=Sin^4thetasec^2theta