Home
Class 11
MATHS
If sin x + sin^(2) x + sin^(3) x = 1 ,...

If ` sin x + sin^(2) x + sin^(3) x = 1 ` , then prove that `cos^(6)x - 4 cos^(4) x + 8 cos^(2) x - 4 = 0 ` .

A

2

B

1

C

3

D

4

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

If sinx+sin^2x=1 then show that cos^2 x +cos^4 x=1

If sin x + sin ^(2) x=1, then the value of cos ^(12) x+3 cos ^(10) x+3 cos ^(8) x + cos ^(6) x-2 is equal to ............. A) 0 B) 1 C) -1 D) 2

int(sin^(4)x-cos^(4)x)dx=

If sinx+sin^2x=1 , then find the value of cos^(12)x +3cos^(10)x + 3 cos^8x + cos^6x-1

If sinx+ sin^2x =1 , then cos^8x+ 2cos^6x +cos^4x =

2cosx-cos3x-cos5x= ............... A) 16 cos ^(3) x sin ^(2) x B) 16 sin^(2) x cos ^(2) x C) 4 cos ^(2) x sin ^(2) x D) 4 sin ^(2) x cos ^(2)x

int(sin^4x-cos^4x) dx =

If 0 cos x + cos 2x + cos 3x + cos 4x = 0 ;

(sin 5x + sin 3x)/(cos 5x + cos 3x) = tan 4x

If sin^-1 x + sin^-1 y = (2pi)/3, then cos^-1 x + cos^-1 y =