Home
Class 11
MATHS
Prove that: sin^(2) (pi/8) +sin^(2) ((...

Prove that:
`sin^(2) (pi/8) +sin^(2) ((3pi)/8) +sin^(2)((5pi)/8)+sin^(2)((7pi)/8)=2`

A

1

B

2

C

`3/8`

D

`1/8`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sin^2 (pi/8)+sin^2 ((3pi)/8)+sin^2 ((5pi)/8)+sin^2 ((7pi)/8) is

sin^4\ pi/8 + sin^4\ (3pi)/8 + sin^4\ (5pi)/8 + sin^4\ (7pi)/8=

Prove that sin^2(pi/4-x)+sin^2(pi/4+x)=1

Solve the following:Show that sin^2(pi/10)+sin^2((4pi)/10)+sin^2 ((6pi)/10)+sin^2 ((9pi)/10)=2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

sin^4(pi/8)+sin^4((2pi)/8)+sin^4((3pi)/8)+sin^4((4pi)/8)+sin^4((5pi)/8)+sin^4((6pi)/8)+sin^4((7pi)/8)=

sin(pi/10)sin((3pi)/10)=

The value of sin ""(pi)/(16) sin ""(3pi)/(16) sin ""(5pi)/(16) sin ""(7pi)/(16) is