Home
Class 11
MATHS
Prove that: \ sqrt(2+sqrt(2+2cos4theta))...

Prove that: `\ sqrt(2+sqrt(2+2cos4theta))=2costheta`

A

`cos theta `

B

`sin theta `

C

`2 cos theta `

D

`2 sin theta `

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: sqrt(2+sqrt(2+2cos4theta))=2costheta

Prove that : (sin^(2) theta)/(cos theta ) + cos theta = sec theta

Prove that (frac(sintheta-2sin^3theta)(2cos^3theta-costheta))=tantheta

Prove that : sqrt[[1+costheta]/[1-costheta]]=cosectheta+cottheta

Prove the following: sqrt(frac(1-cos2theta)(1+cos2theta))=tantheta

Select and write the correct answer from the given alternatives in each of the following: sqrt(2+sqrt(2+2cos4theta))=

Prove that sin^4 theta - cos^4 theta = 1 - 2cos^2 theta

If tan theta=(sin alpha- cos alpha)/(sin alpha+cos alpha) , then sin alpha+cos alpha =.................... A) sqrt2 cos, theta sqrt2 sintheta B) -sqrt2 sin theta, -sqrt2 cos theta C) sqrt2 sin theta , sqrt2 sin theta D) sqrt2 cos theta , - sqrt2 cos theta

Prove that : sin^(4)theta + cos^(4)theta = 1 - 2 cos^(2) theta + 2 cos^(4)theta

Prove that y = frac {4 sintheta}{2+ costheta} - theta is an increasing function of theta in [0, frac{pi}{2} ]