Home
Class 11
MATHS
If cos (theta -alpha) =a, sin (theta - b...

If `cos (theta -alpha) =a, sin (theta - beta) =b, ` then `cos ^(2) (alpha - beta) + 2 ab sin (alpha - beta) ` is equal to

A

`4a ^(2) b ^(2)`

B

`a^(2) -b^(2)`

C

`a ^(2) +b^(2)`

D

`-a^(2) b^(2)`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If cot (alpha + beta) = 0 , then sin (alpha + 2 beta) is equal to

If cos(theta-alpha) = a and cos(theta-beta) = b then the value of sin^2(alpha-beta) + 2ab cos(alpha-beta)

If sin(theta+alpha)=a and sin(theta+beta)=b then cos2(alpha-beta)-4abcos(alpha-beta) is equal to

2 sin ^(2) beta + 4 cos (alpha + beta) sin alpha sin beta + cos 2 (alpha + beta )=

sin (beta+ gamma- alpha) + sin (gamma+ alpha - beta) + sin (alpha + beta- gamma)- sin (alpha + beta + gamma)=

If alpha + beta - gamma =pi, then sin ^(2) alpha + sin^(2) beta- sin ^(2) gamma=

If tan beta=cos theta tan alpha , then prove that tan^(2)""(theta)/(2)=(sin(alpha-beta))/(sin(alpha+beta)) .

If alpha, beta are solutin of 6 cos theta + 8 sin theta=9, then sin (alpha + beta)=

IF alpha+beta=pi/2 , then cos alpha cos beta has a maximum value at beta =