Home
Class 11
MATHS
prove that (tan A) / ( 1+tan^2A)^2 +(cot...

prove that `(tan A) / ( 1+tan^2A)^2 +(cotA)/(1+cot^2A)^2`=sinA cosA.

A

1

B

`-1`

C

0

D

`1/2`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove: (tanA)/((1+tan^2A)^2)+(cotA)/((1+cot^2A)^2)=sinAcosA

Prove that : (1+ (1)/(tan^2 A)) (1 +(1)/(cot^2 A)) = (1)/(sin^2 A - sin^4 A)

Prove that (frac(tan^3 x)(1+tan^2 x))+(frac(cot^3 x)(1+cot^2 x))=secxcosecx-2sinxcosx

Prove that (1+(1)/(tan^2 A)) (1+(1)/(cot^2A)) = (1)/(sin^2 A- sin^4 A)

Prove that (tan A)/(sec A -1) + (tan A)/(sec A +1) = 2 cosec A

prove that sec^4 A(1-sin^4 A) - 2tan^2 A = 1.

prove that cos^2theta(1 + tan^2 theta) = 1

(sec 8 A-1)/( sec 4A-1)= ..................... A) (tan 2A)/( tan 8A) B) (tan 8A)/(tan 2A) C) (cot 8A)/(cot 2A) D) (tan 6A)/(tan 2A)

If tan(A/2)=3/2 , then (1+cosA)/(1-cosA) =

Prove that - tan^(-1).(1)/(2)+tan^(-1).(2)/(11)=