Home
Class 11
MATHS
Maximum value of sin^4 theta + cos^4 th...

Maximum value of `sin^4 theta + cos^4 theta` is .............. A) `2` B) `(1)/(2)` C) `-1` D) `1`

A

`2`

B

`(1)/(2)`

C

`-1`

D

`1`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

The maximum value of 12 sin theta -9 sin ^(2) theta is.............. A) 3 B) 4 C) 5 D) 2

Maximum and minimum values of sin^4theta+cos^4theta are

The largest value of sin theta cos theta is ................ A) 1 B) 1/2 C) (1)/(sqrt2) D) (sqrt3)/(2)

If sintheta-costheta=1, then the value of sin^3theta-cos^3theta is................. A) 1 B) -1 C) 0 D) 2

If theta lies in the first quadrant and 5 tan theta = 4 , " then " (5 sin theta - 3 cos theta )/( sin theta + 2 cos theta )= .............. A) 0 B) 1 C) 1/6 D) 5/14

cot(pi/4+theta)cot(pi/4-theta)"is" .................. A) 0 B) -1 C) 1 D) -2

If 8 theta = pi, then cos 7 theta + cos theta is equal to ............ A) 0 B) 1 C) -1 D) 7

If sin theta + cos theta =1 then sin theta cos theta = ......... A) 0 B) 1 C) 2 D) 1/2

Find the value of 6(sin^6theta+cos^6theta)-9(sin^4theta+cos^4theta)+4 ............ A) -3 B) 0 C) 1 D) 3

The sin theta + "cosec" theta =2 , then: sin^(2)theta + "cosec"^(2)theta =............ A) 1 B) 3 C) 2 D) 4