Home
Class 11
MATHS
Prove that (i) " cos " ((pi)/(4) + x...

Prove that
`(i) " cos " ((pi)/(4) + x) + " cos " ((pi)/(4)- x) =sqrt(2) " cos " x`
`(ii) " cos " ((3pi)/(4) + x) - "cos " ((3pi)/(4)-x) =- sqrt(2) " sin " x`

A

`sqrt2 sin ^(2) x`

B

`sqrt2 sin x`

C

`sqrt2 cos ^(2) x`

D

`sqrt2 cos x`

Text Solution

Verified by Experts

The correct Answer is:
D
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that (i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2) (ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2) (iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2))

cos ""(2pi)/( 15) cos ""(4pi)/(15) cos ""(8pi)/(15) cos ""(16pi)/(15)=

3(sin x- cos x )^(4) + 6(sin x+ cos x )^(2) +4 (sin ^(6) x+ cos ^(6) x)=

cos 10x + cos 8x + 3 cos 4x + 3 cos 2x=

cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=

Show that cos^2(pi/4-x)+cos^2(pi/4+x)=1

If f(x) = cos x cos 2x cos 4x cos (8x). cos 16x then find f' (pi/4)

Prove the following: cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)