Home
Class 11
MATHS
If 0 lt x lt (pi)/(4), then sec 2x - tan...

If `0 lt x lt (pi)/(4),` then `sec 2x - tan 2x=`................ A) `tan (x- (pi)/(4))`
B) `tan ((pi)/(4) -x)` C) `tan (x+(pi)/(4))` D) `tan ^(2) (x+ (pi)/(4))`

A

`tan (x- (pi)/(4))`

B

`tan ((pi)/(4) -x)`

C

`tan (x+(pi)/(4))`

D

`tan ^(2) (x+ (pi)/(4))`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If 0<(x)<(pi/4) , then sec2x-tan2x=

tan^(-1)tan((3pi)/(4))

int sec^4 x tan x dx =

Evaluate : int_(0)^(pi//4) tan ^(2) x dx

When x = (pi)/(2), then tan x is

If tan x = 3/4, pi lt x lt (3pi)/(2), then the value of cos ""x/2 is ............... A) -(1)/(sqrt10) B) (3)/(sqrt10) C) (1)/(sqrt10) D) -(3)/(sqrt10)

If : tan((pi)/(4)+theta) - tan((pi)/(4) - theta) =m*tan (ntheta),"then" m and n equal to

If 0 lt x lt pi and cos x + sin x = 1/2 , then tan x is

int_(0)^(pi//4) tan^(6)x sec^(2)x dx=

If y=log[tan(pi/4 +x/2)]) ,then (dy)/(dx) is