Home
Class 11
MATHS
A and B are positive acute angles satisf...

A and B are positive acute angles satisfying the equation `3cos^2A +2cos^2B=4`, `(3sinA)/(sinB)=(2cosB)/(cosA)` then `A+2B` is

A

`pi/3`

B

`pi/2`

C

`pi/6`

D

`pi/4`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

If A and B are positive acute angles satisfying the equations 3 cos^2A+2cos^2B=4 and (3sinA)/(sinB)=(2cosB)/(cosA) , then A+2B is equal to

Find the acute angles A and B satisfying secAcotB-secA-2cotB+2=0

Find the acute angles A and B satisfying cot(A+B)=1,cosec(A-B)=2

Select the correct options from the given alternatives.Let 0 < A , B < pi/2 satisfying the equation 3sin^2A+2sin^2B=1 and 3sin2A-2sin2B=0 then A+2B is equal to………..

(cosA+cosB)^2+(sinA-sinB)^2 is equal to

Find the acute angle theta such that 2cos^2theta=3sintheta .

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

If sin A = 1/sqrt10 and sin B =1/sqrt5 , where A and B are positive acute angles, then A + B is equal to.................. A) pi B) pi/2 C) pi/3 D) pi/4

If A+B+C=3pi/2 then cos2A+cos2B+cos2C=1-4sinAsinBsinC

In triangleABC,A+B+C=pi ,show that cos^2A+cos^2B-cos^2C=1-2sinAsinBcosC