Home
Class 11
MATHS
Prove that cos 18^(@)-sin 18^(@)=sqrt(2)...

Prove that `cos 18^(@)-sin 18^(@)=sqrt(2)sin 27^(@)`

A

`sin 27^(@)`

B

`sqrt2 sin 27^(@)`

C

`cos 27^(@)`

D

`sqrt2 cos 27^(@)`

Text Solution

Verified by Experts

The correct Answer is:
B
Promotional Banner

Similar Questions

Explore conceptually related problems

cos18^@-sin18^@=

Prove that (cos 8^(@) - sin 8^(@))/(cos 8^(@) + sin 8^(@)) = tan 37^(@)

Prove that (cos 9^(@)+ sin 9^(@))/(cos 9^(@) -sin 9^(@)) = tan 54^(@)

Show that sin 105^(@) + cos 105^(@) =(1)/(sqrt(2))

Prove that sin(45^@+A)sin(45^@-A)=1/2cos2A.

Prove that : cos^(4)theta - cos^(2)theta = sin^(4)theta - sin^(2) theta

Prove that (i) " 2sin " (5pi)/(12) " sin " (pi)/(12)=(1)/(2) (ii) " 2 cos " (5pi)/(12) " cos " .(pi)/(12)=(1)/(2) (iii) " 2 sin ".(5pi)/(12) " cos " (pi)/(2) = ((2+sqrt(3))/(2))

(cos 12^(@) - sin 12^(@))/(cos 12^(@) + sin 12) + (sin 147^(@))/(cos 147^(@))= ................... A) 1 B) -1 C) 0 D) sqrt3

Prove the following: sin18^@=(frac(sqrt5-1)(4))

Prove the following: frac(cos15^@-sin15^@)(cos15^@+sin15^@)=1/sqrt3