Home
Class 11
MATHS
cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt...

`cos((3pi)/(4)+x)-cos ((3pi)/(4)-x)=-sqrt(2) sin x`

A

`-sqrt2 sin x`

B

`sqrt2 sin x`

C

`cos x`

D

`-sqrt2 cos x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

Prove the following: cos(pi/4+x)+cos(pi/4-x)=sqrt2cosx

Prove the following: cos(pi/4-x).cos(pi/4-y)-sin(pi/4-x).sin(pi/4-y)=sin(x+y)

Prove the following: cos(3pi/2+x)cos(2pi+x)[cot(3pi/2-x)+cot(2pi+x)]=1

Show that cos^2(pi/4-x)+cos^2(pi/4+x)=1

cos(pi/7)+cos((2pi)/7)+cos((3pi)/7)+cos((4pi)/7)+cos((5pi)/7)+cos((6pi)/7)=

If f(x) is continuous at x=pi/4 , where f(x)=(1-tanx)/(1-sqrt(2)sin x) , for x!= pi/4 , then f(pi/4)=

Prove the following: cos(pi/2-x)cos(pi/2-y)-sin(pi/2-x)sin(pi/2-y)=-cos(x+y)

Select and write the correct answer from the given alternatives in each of the following: cos(3pi/4+x)-cos(3pi/4-x) =………