Home
Class 11
MATHS
If A+B+C=pi then prove that cos^2 (A/2)+...

If `A+B+C=pi` then prove that `cos^2 (A/2)+cos^2 (B/2)-cos^2 (C/2)=2cos(A/2)cos(B/2)sin(C/2)`

A

`2 cos ""A/2 + cos ^(2) ""B/2 - cos ^(2) ""C/2 `

B

`4 cos ""A/2 cos ""B/2 sin ""C/2`

C

`1-2 cos ""A/2 cos ""B/2 sin ""C/2`

D

`1-4 cos ""A/2 cos ""B/2 sin ""C/2`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

In triangleABC,A+B+C=pi ,show that sin^2( A/2)+sin^2 (B/2)-sin^2 (C/2)=1-2cos(A/2)cos(B/2)sin(C/2)

Prove that: cos^2A+cos^2(A+pi/3)+cos^2(A-pi/3)=3/2

In triangleABC,A+B+C=pi ,show that cosA+cosB-cosC=4cos(A/2)cos(B/2)sin(C/2)-1

In triangleABC,angleC=2pi/3 ,then prove that cos^2A+cos^2B-cosAcosB=3/4

If A+B+C=pi , prove that cos 2A +cos 2B +cos 2C=-1-4cos A cos Bcos C.

In triangleABC,A+B+C=pi ,show that cos^2A+cos^2B-cos^2C=1-2sinAsinBcosC

If A+B+C =pi, then cos ^(2) A+ cos ^(2)B + cos^(2) C is equal to

In /_\ABC prove that a^2(cos^2B-cos^2C)+b^2(cos^2C-cos^2A)+c^2(cos^2A-cos^2B) = 0

If A+B+C=pi , then cos 2A+cos 2B+cos 2C=

Solve the following: If A+B+C=pi ,prove that sin(B+2C)+sin(C+2A)+sin(A+2B)= 4sin((B-C)/2)sin((C-A)/2)sin((A-B)/2)