Home
Class 11
MATHS
In triangle ABC, the value of sin 2A +...

In triangle ABC, the value of `sin 2A + sin 2B+ sin 2C` is equal to

A

`4 sin A sin B sin C`

B

` 4 cos A cos B cos C`

C

` 2 cos A cos B cos C`

D

` 2 sin A sin B sin C`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A, B, C are the angles of a triangle, then sin 2A + sin 2B - sin 2C is equal to

If alpha + beta + gamma=pi, then the value of sin ^(2) alpha + sin ^(2) beta - sin^(2) gamma is equal to ....... A) 2 sin alpha B) 2 sin alpha cos beta sin gamma C) 2 sin alpha sin beta cos gamma D) 2 sin alpha sin beta sin gamma

In any triangle ABC. sin ^(2) ""A/2 + sin ^(2) ""B/2 + sin ^(2) ""C/2 is equal to

In triangleABC, a^(2) sin2C + c^(2) sin2A=

The value of sin10^@sin30^@sin50^@sin70^@ is equal to

sin^2 17.5^@+sin^2 72.5^@ is equal to

The value of 2 sin 3x cos 2x is equal to

In a triangle ABC, if a = 2, b = 3 and c=4 , then cos A is equal to

If A, B, C are the angles of a triangle then sin^(2)A+sin^(2)B+sin^(2)C-2cosAcosBcosC is equal to