Home
Class 12
MATHS
If A=[(a,0),(0,(1)/(b))], then A^(-1) =...

If `A=[(a,0),(0,(1)/(b))]`, then `A^(-1) =`

A

`[(-a,0),(0,-(1)/(b))]`

B

`[(-(1)/(a),0),(0,-(1)/(b))]`

C

`[((1)/(a),0),(0,b)]`

D

`[(-a,0),(0,b)]`

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is...a) A^T b) A^2 c) A d) I

If {:A=[(a,0,0),(0,b,0),(0,0,c)]:}," then "A^(-1) , is..... a) [(a,0,0),(0,(1)/(b),0),(0,0,c)] b) [((1)/(0),0,0),(0,(1)/(b),0),(0,0,c)] c) [(a,0,0),(0,(1)/(b),0),(0,0,(1)/(c))] d) [((1)/(a),0,0),(0,(1)/(b),0),(0,0,(1)/(c))]

If A={:[(3,2),(0,1)]:}" then:(A^(-1))^(3)= ...a) (1)/(27)[(1,-26),(0,27)] b) (1)/(27)[(-1,26),(0,27)] c) (1)/(27)[(1,-26),(0,-27)] d) (1)/(27)[(-1,-26),(0,-27)]

If A=[(1,3),(2,4)] and (AB)^(-1)=[((-1)/(2),(1)/(2)),((1)/(4),0)] , then B^(-1). A^(-1)=

If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a matrix A has inverse C=[(-1,0,1),(1,1,3),(2,0,2)] then A^-1=

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

[(1,3,-2),(-3,0,-5),(2,5,0)] =A [(1,0,0),(0,1,0),(0,0,1)] then, C_(2) rarr C_(2)-3C_(1) and C_(3) rarr C_(3) +2C_(1) gives... [(1,0,0),(3,-9,11),(-2,1,4)] =A [(-1,3,2),(0,-1,0),(0,0,-1)] [(1,0,0),(-3,-1,-4),(2,-9,11)] =A [(1,-3,2),(0,1,0),(0,0,1)] [(1,0,0),(-3,1,4),(-2,9,-11)] =A [(-1,3,2),(0,-1,0),(0,0,-1)] [(1,0,0),(-3,9,-11),(2,-1,4)] =A [(1,-3,2),(0,1,0),(0,0,1)]

If A=[((k)/(2),0,0),(0,(l)/(2),0),(0,0,(m)/(4))] and A^(-1)= [((1)/(2),0,0),(0,(1)/(3),0),(0,0,(1)/(4))] then k+l+m=