Home
Class 12
MATHS
If A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] a...

If `A=[[1, 2, 2], [2, 1, 2], [2, 2, 1]] and A^(-1)` exist and not equal to 0, then `(A^(2)-4A)A^(-1)=`

A

(a) `[(-3,2,2),(2,-3,2),(2,2,-3)]`

B

(b) `[(3,2,2),(2,3,2),(2,2,3)]`

C

(c) `[(5,2,0),(2,5,0),(0,2,5)]`

D

(d) `[(5,2,5),(2,5,5),(5,5,5)]`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,4,4),(4,1,4),(4,4,1)] and A^(-1) exists and not equal to zero, then (A^(2)-8A)A^(-1) =

If A=[[1,2,2],[2,1,2],[2,2,1]] show that A^2-4A is a scalar matrix.

If the inverse of [[1, 2, x], [4, -1, 7], [2, 4, -6]] does not exist, then x=

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

1+cos^2 2A is equal to

If [(x,1),(1,0)] and A^(2)=I , then A^(-1) is equal to

If A=[(1,2,0),(-1,1,2),(2,-1,1)] then det (Adj(AdjA))=

IF A =[(1,2,3),(-1,1,2),( 1,2,4)]"then " (A^(2) -5A) A^(-1)=

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

If matrix A=[{:(3,2,4),(1,2,-1),(0,1,1):}]and A^(-1)=1/k adj A, then k is