Home
Class 12
MATHS
If [(x,1),(1,0)] and A^(2)=I, then A^(-...

If `[(x,1),(1,0)]` and `A^(2)=I`, then `A^(-1)` is equal to

A

`[(0,1),(1,0)]`

B

`[(1,0),(0,1)]`

C

`[(1,1),(1,1)]`

D

`[(0,0),(0,0)]`

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[x,1],[1,0]] and A^2=I , then A^(-1) is equal to: a) [[0,1],[1,0]] b) [[1,0],[0,1]] c) [[1,1],[1,1]] d) [[0,0],[0,0]]

If A=[(2x,0),(x,x)] and A^(-1)=[(1,0),(-1,2)] then x equals to

If (1-i)^n = 2^n , then n is equal to

If A=[(2,2),(-3,2)], B=[(0,-1),(1,0)] then (B^(-1)A^(-1))^(-1) is equal to

(1+i)^10 , where i^2=-1 , is equal to

If A=[(1,-1,0),(1,0,0),(0,0,-1)] , then A^(-1) is...a) A^T b) A^2 c) A d) I

If f(x) = (x-1)/(x+1) , then f(2x) is equal to

int(x^(2)+1)sqrt(x+1)dx is equal to