Home
Class 12
MATHS
If a matrix A is such that 4A^(3)+2A^(...

If a matrix A is such that
`4A^(3)+2A^(2)+7A+I=0`, then `A^(-1)` equals: a)`4A^(2)+2A+7I` b)`-(4A^(2)+2A+7I)` c)`-(4A^(2)-2A+7I)` d)`4A^(2)+2A-7I`

A

`4A^(2)+2A+7I`

B

`-(4A^(2)+2A+7I)`

C

`-(4A^(2)-2A+7I)`

D

`4A^(2)+2A-7I`

Text Solution

Verified by Experts

The correct Answer is:
b
Promotional Banner

Similar Questions

Explore conceptually related problems

If A = [[3,1],[-1,2]] then show that: A^2-5A+7I = 0 .

If (a + 3i) / (2 + ib) = 1 - i, show that 5a - 7b = 0.

If frac{a+3i}{2+ib} = 1-i, show that (5a-7b)=0

Solve the following quadratic equations. x ^(2) - ( 2 + i ) x - ( 1 - 7i ) = 0

If tantheta=3/4 , then cos^2theta-sin^2theta= 7/(25) (b) 1 (c) -7/(25) (d) 4/(25)

If (3+i)x + (1-2i)y + 7i = 0 , then the values of x and y respectively are

Show that (1- 2i )/( 3 - 4i ) + (1 + 2i )/( 3 + 4i ) is real.

If cos A =3/4, then 32 sin ""A/2 cos ""(5A)/(2)= ...........A) sqrt7 B) -sqrt7 C) 7 D) -7

If D=diag[2, 3, 4] , then D^(-1)= ...a) O b) I c) D d) diag [(1)/(2), (1)/(3), (1)/(4)]