Home
Class 12
MATHS
If n ne 3k and 1 , omega , omega ^(2) ar...

If `n ne 3k and 1 , omega , omega ^(2)` are the cube roots of units , then `Delta =Delta=|(1,omega^(n),omega^(2n)),(omega^(2n),1,omega^(n)),(omega^(n),omega^(2n),1)|` has the value

A

0

B

`omega`

C

`omega^(2)`

D

1

Text Solution

Verified by Experts

The correct Answer is:
a
Promotional Banner

Similar Questions

Explore conceptually related problems

If 1 , omega , omega^2 are the cube roots of unity,then /_\=|[1,omega^n,omega^n],[omega^n,omega^(2n),1],[omega^(2n),1,omega^n]|

If 1, omega,(omega)^2 are the cube roots of unity, then their product is

If 1,omega,(omega)^2 are the cube roots of unity, then (omega)^2(1+omega)^3-(1+(omega)^2)omega=

If 1,omega,(omega)^2 are the cube roots of unity, then (a+b+c)(a+b(omega)+c(omega)^2)(a+b(omega)^2+c(omega)) =

If 1 , omega and (omega)^2 are the cube roots of unity, then (1-omega+(omega)^2)(1-(omega)^2+(omega)^4)….......upto 8 terms is

If omega is a complex cube root of unity, then (1+omega^2)^4=

If 1, omega , (omega)^2 are the cube roots of unity, then frac{1}{1+2(omega)}+frac{1}{2+omega}-frac{1}{1+omega} =

If omega is a complex cube root of unity , then (1+omega-2(omega)^2)^4+(4+omega+4(omega)^2)^4=

If omega is a complex cube root of unity, then show that: (1 + omega - omega^2)^6 = 64